

Profile

Energy Optimisation and Productivity Monitoring using Simulation Techniques

HETA DATAIN, NAGPUR, INDIA

CONTENTS

Energy Optimisation Philosophy

How we do Energy Optimisation

Detailed Case Study of Pumping

Case study of Pumping System improvement

Productivity and Energy Intensity Philosophy

How we do Productivity and Energy Optimisation

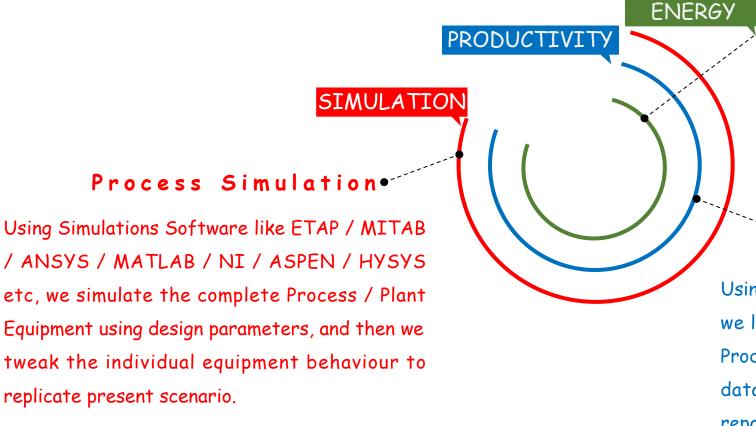
Area of Expertise

Area where we claim Expertise and knowledge

Projects Completed or Work in Progress

List of Completed Projects

Heta Datain


Contact Details

Area of Expertise

Energy Audit / Energy Optimisation / Productivity Monitoring / Production Optimisation / Energy Intensity / Process and Equipment Simulation Embedded Dataloggers, Industry 4.0, Wireless communication, Cloud Computing, Real Time Dashboards and APP, Management Information and Business Intelligence Reports

Real Time Energy Optimisation

Heta Datain

Using Non-Invasive Sensors and Dataloggers, we log Energy parameters from each Feeder / Equipment without any Outage. This data is analysed for the Energy Map of the Process / Equipment for Energy Optimisation.

Real Time Productivity Monitoring

Using Non-Invasive Sensors and Embedded Dataloggers, we log necessary Production parameters required for Productivity Monitoring in Real Time. We then map this data with Energy consumed to give Energy Intensity reports and analysis.

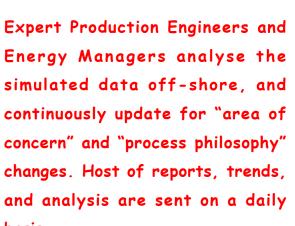
How WE achieve Energy Optimisation

Doing Energy Audit is STATIC. It only gives the status of Energy efficiency based on the present parameters, and the remedies suggested are limited to that time scenario. Production, User Demand, Seasonal Weather, Occupancy variation etc. are parameters which vary every hour throughout the year, and this makes Energy Optimisation of these processes a very DYNAMIC exercise

Real Time Data using IOT, Data Loggers, Wireless, Cloud based Servers log Energy parameters in an non-invasive manner, without any outage. This system remains in place for a year.


Design, Equipment and Process details are mapped with the Energy parameters logged, and the complete User Process / Plant is simulated on high end Computers to visualize the actual status and efficiency.

Users get a dashboard showing near Real Time status of Process not post-mortem.


Expert Energy Managers analyse the simulated data off-shore, and / Equipment efficiency, to take continuously update for "area of corrective action IN-TIME and concern" and "process philosophy" changes. Host of reports, trends, and analysis are sent on a daily basis

How WE achieve Productivity and Energy Optimisation

Real Time Monitoring of Machine Production, Running / Idle / Breakdown / Stoppage time and Energy parameters simultaneously, gives enough data to map the Energy Intensity of each Machine / Process. Off-shore simulation of this system gives co-relation between different process parameters gives a tool for increase in Productivity and Energy Optimisation of the system

Real Time Data using IOT, Data Loggers, Wireless, Cloud based Servers log Energy parameters in an non-invasive manner, without any outage. This system remains in place for a year. Design, Equipment, Production and Process details are mapped with the Energy parameters logged, and the complete User Process / Plant is simulated on high end Computers to visualize the actual status and efficiency. Users get a dashboard showing near Real Time status of Process Productivity / Equipment efficiency, to take corrective action IN-TIME and not postmortem.

Energy Optimisation of District Cooling Plant

Works Executed or Work in Progress

Located in United Arab Emirates, DUBAI

40,000 TR District Cooling Plant:. Electricity consumed 900,000 KWH per day

 ✓ Process Philosophy Changed to achieve Energy Optimisation after Computer Simulation of 24 month data from 746 tags every 2 minutes, or 400 million data points

✓ No CAPEX was done.

Result achieved was increase of RT/CUM from 1.02 to 1.57, giving a
 saving of AED 7 million per year.

- ✓ Targeted increase will be 2.25 RT/CUM, giving a saving of AED 15 million per year
- 3 District Cooling Plants work in progress totaling 81,250 TR

AIRCON Energy Monitoring of Hospitals

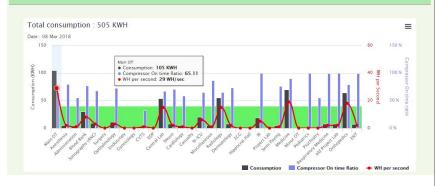
Works Executed or Work in Progress

Located in United Arab Emirates

185 and 176 Bedded Hospitals with IPD and OPD

- Logging of 90 Feeders and analyzing 6 million Electrical Parameters every day. Uploading these to the Cloud every minute
- ✓ Simulation of last 12 months data of these feeders to create an OFF-SHORE replica of the Hospitals
- ✓ Based on the analysis, Process Changes were recommend to achieve Energy Optimisation
- ✓No CAPEX was done and Maintenance cost has been reduced due to Smoother operation of the System
- ✓ Alerts, Early Warning reports, and misuse Alarms reduced the Electrical consumption to 11.8% of the last years value on basis of M&V.

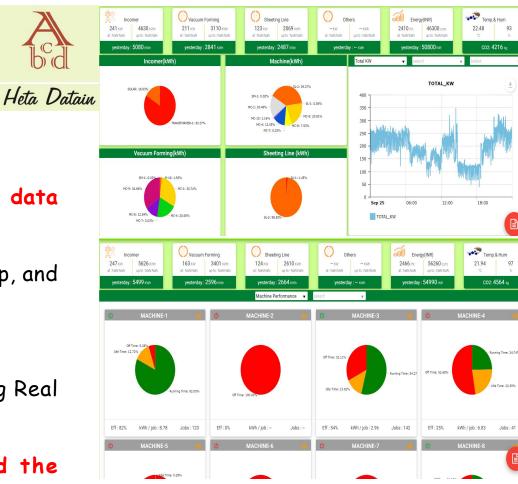
AIRCON Energy Monitoring of Hospitals


Works Executed

Located in INDIA

1200 Bedded Hospitals with IPD and OPD

- Logging and Monitoring 256 Central, Split and Window Mounted Air
 Conditioners for 134 million parameters per year. Data sent to the cloud every minute.
- ✓ Compressor Loading/Un-loading time breakup, Energy Consumption, and Cooling Temperature was monitored
- ✓No CAPEX was done.
- \checkmark Maintenance cost has been reduced dramatically due to fore-warning of
 - Aircon working parameters.
- ✓ Alerts, Early Warning reports, and misuse Alarms reduced the Electrical consumption to 42% of the last years value.

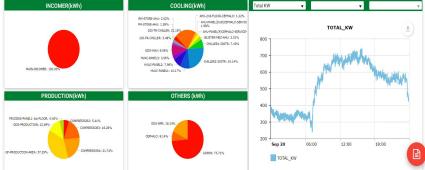


Productivity and Energy Monitoring of Manufacturing Industry

Works Executed in INDIA

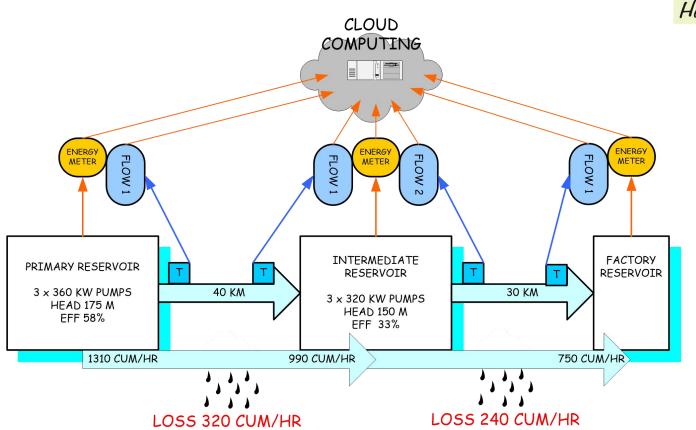
Vacuum Forming for Automobile Industries

- Logging and Monitoring 16 VF Production Machines for 1 million data parameters per day. Data sent to the cloud every minute.
- Each Machine Running/ Idle / Breakdown / Stoppage time breakup, and Energy Consumption was monitored
- ✓No CAPEX was done.
- ✓ Productivity has improved since all stake holders are monitoring Real
 - Time status and not post-mortem.
- Alerts, Early Warning reports, and misuse Alarms reduced the
 KWH/Job to 18% of the last years value.


Productivity and Energy Monitoring of Pharmaceutical / Packaging Industry

Works Executed in INDIA

Medicine Making or Packaging Machines


- Logging and Monitoring 26 Production Machines and 30 Electrical Feeders for 2 million data parameters per day. Data sent to the cloud every minute.
- Each Machine Running/ Idle / Breakdown / Stoppage time breakup, and Energy Consumption was monitored
- ✓No CAPEX was done.
- ✓Productivity has improved since all stake holders are monitoring Real
 - Time status and not post-mortem.
- ✓ Alerts, Early Warning reports, and misuse Alarms reduced the Idle
 - Time of Machines since last years value.



Water Pumping and Pipeline Loss Audit using Synchronous Logging Techniques

Works Executed in INDIA

For a 70 KM long Pipeline designed to carry 1500 CUM/hr of water, only 750 CUM/hr water reached the source. The air was to improve the Pumping Efficiency, and locate the water leakage or pilferage. The pipeline was mostly underground, and passing through forest aera.

Simultaneously data logging of 4 flow meters and 6 Energy meters was done to acheive the outcome.

Heta	Datain

	SIZE OF DATA HANDLED IN CLOUD COMPUTING												
Project Name	Project start Date	Data Size (GB)	MONTHS	DATA/MONTH (MB)									
DCP7	Jun-17	20	27	741									
DCP 136	Mar-18	2	18	111									
ETS 136	Feb-19	7	8	875									
ZHS	Feb-18	13	20	650									
ZHD	Jun-18	8.5	16	531									
AF	Oct-18	5	12	417									
PANCHWATI	Jan-19	2	9	222									
ZLL	Apr-19	5.5	5	1100									
	TOTAL	63 <i>G</i> B	115 MONTHS	4647 MB / MONTH									

The data uploaded from the site for Cloud Computing handled by the VIRTUAL PRIVATE SERVER is 4.67 GB per month. The Total Data available on Cloud is now 63 GB since the last 2 years.

The Software has MSSQL, My SQL, Windows Server 16 OS, Python, PHP, Laravel Angular, JSS, Power BI, etc.

The Hardware is 3rd Gen VPS, 8 GB RAM, 240 GB Disk Space, 8 TB / month bandwidth.

Pumping Station Efficiency

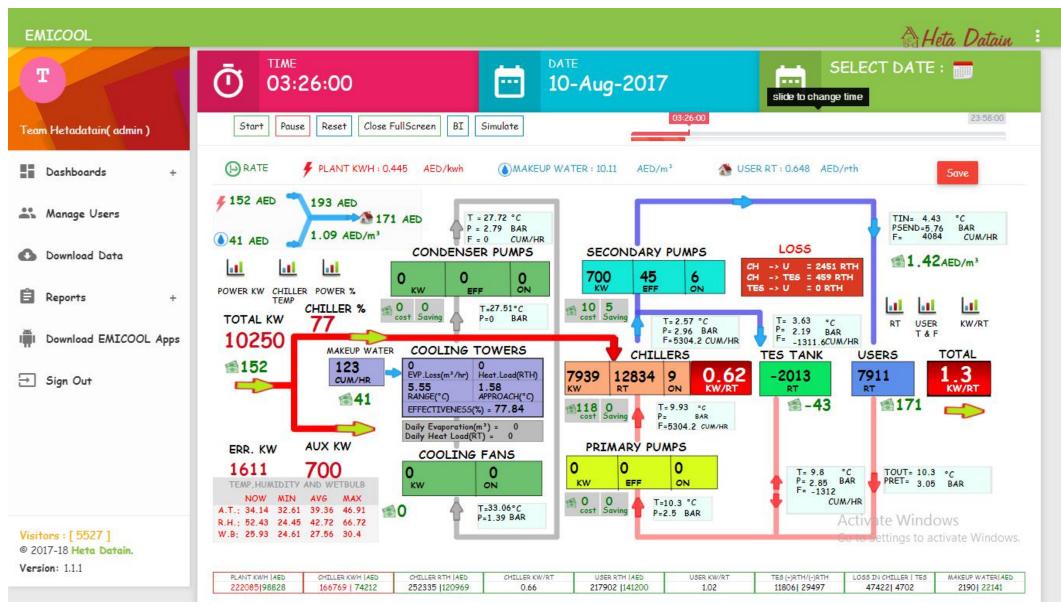
An Innovative Approach

- ✓ Water / Sewage Pumping Station consists of Multiple Pumps working in parallel, generally 24 hours, to provide un-interrupted flow at varying user requirement.
- ✓ Depending on the user requirement, number of pumps are switched on in a cyclic manner.
- ✓ The Pump are normally SCADA controlled or some Automation system to maintain head/flow.
- ✓ Energy consumed by the Pumping System is generally recorded daily or at hourly intervals.
- ✓ Daily Total Volume of fluid pumped is recorded every day.

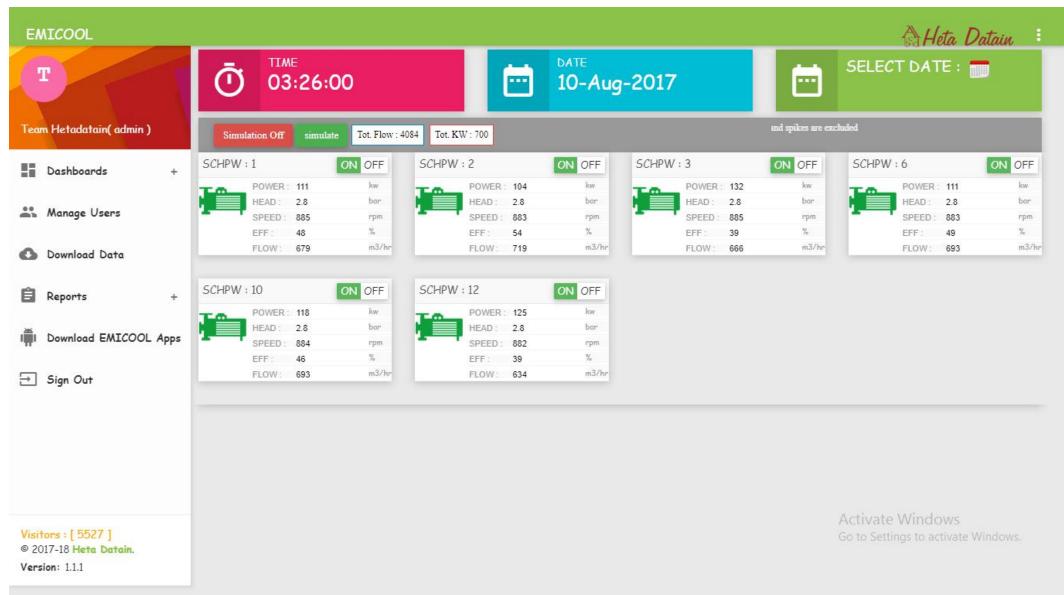
a Datain

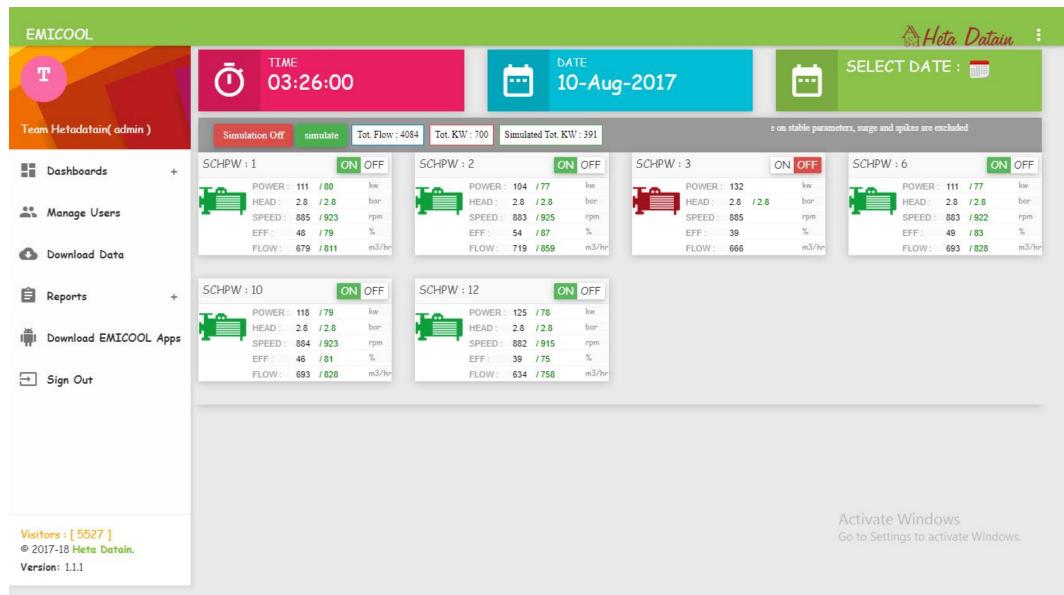
Efficiency

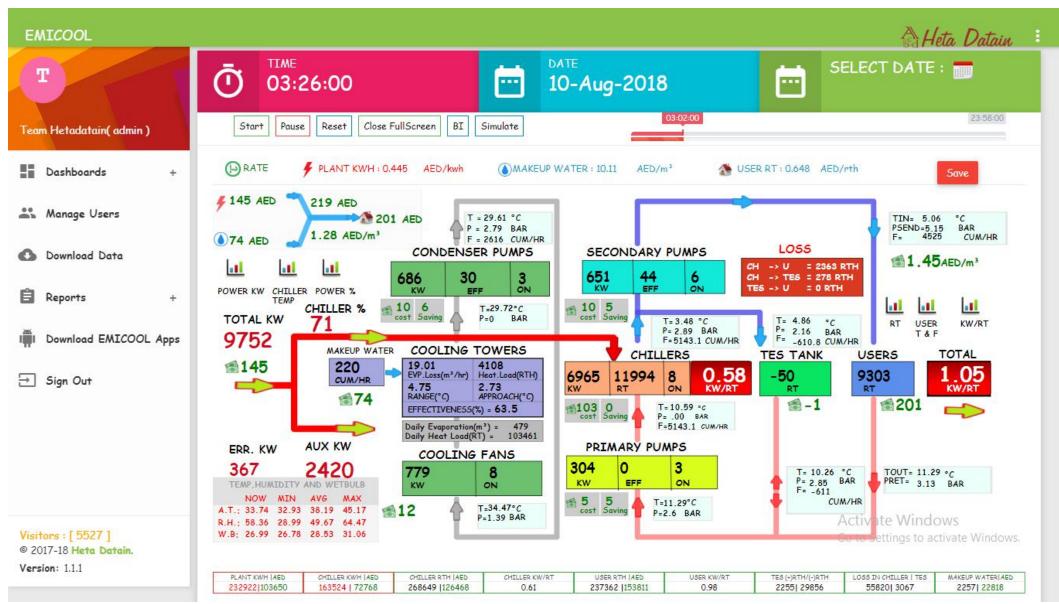
- ✓ Pumps are designed to work at 80-85% efficiency at their Best Efficiency Point (BEP), at a certain Flow and Head. The Pump Curve defines the Efficiency at various Flow / Head combinations.
- ✓ When 2 or more pump start to work in parallel, on a common header, Efficiency gets reduced, and depends on the Pump curves and System curve. Typically the least efficient Pump drags the system efficiency down.
- ✓ Pumping System deficiencies are seen to get reduced to 40-60% range, if parallel operation of Pumps are not correctly done.



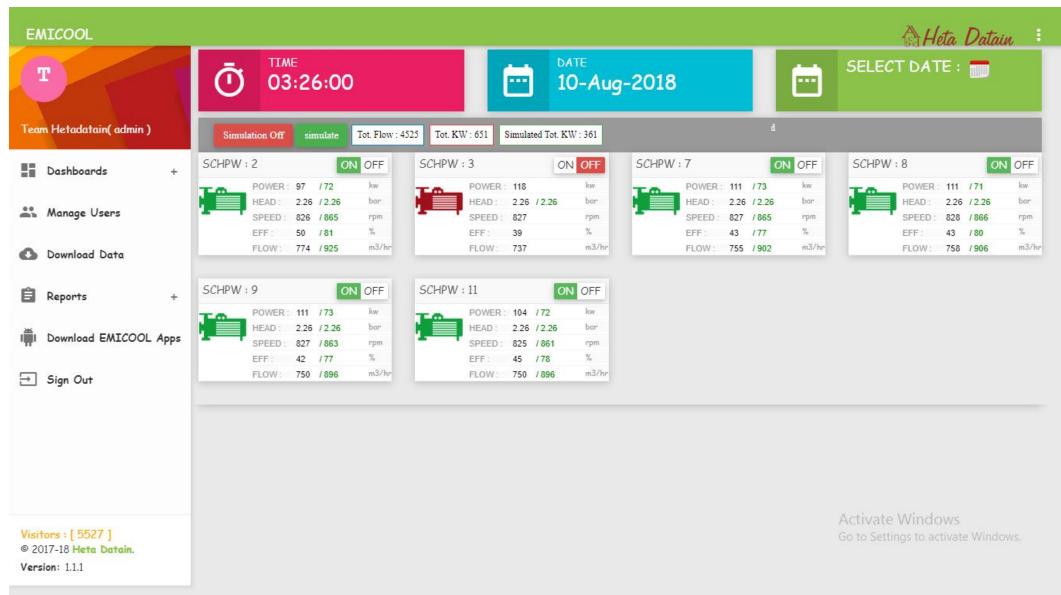
Energy Optimisation Philosophy by HETA DATAIN

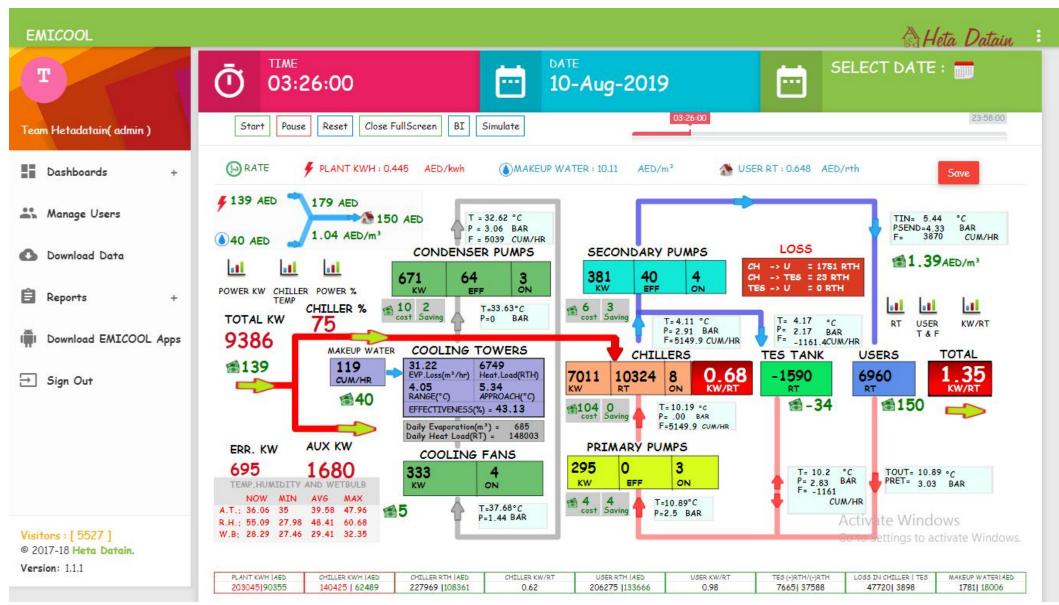

- ✓ Problem 1: Calculating individual Pump Efficiency when operating in parallel. Individual
 Pump flows are not measured. Only cumulative pump flow is measured.
- ✓ Problem 2: Individual Pump Deficiencies vary on the same load with different combinations of Pumps in parallel.
- ✓ Problem 3: If individual Pump Efficiency are not available, then improving Pumping System Efficiency becomes impossible.
- Solution: Find out the individual Pump Efficiency when operating in parallel, for each combination of parallel operating Pumps. This will require individual Pump Flow while operating in parallel, which is not measured.

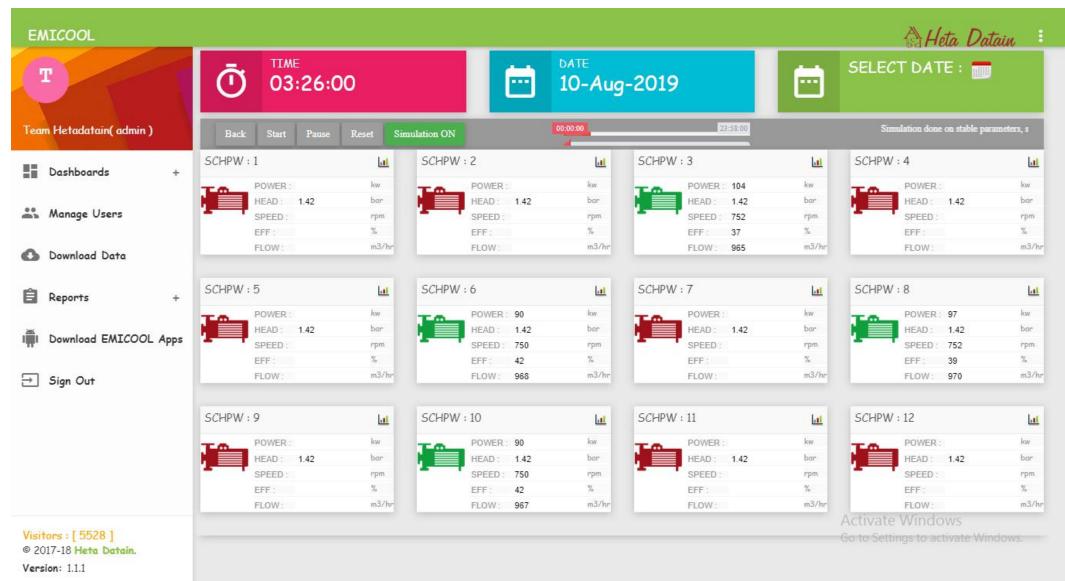

Case Study of Pump Optimisation

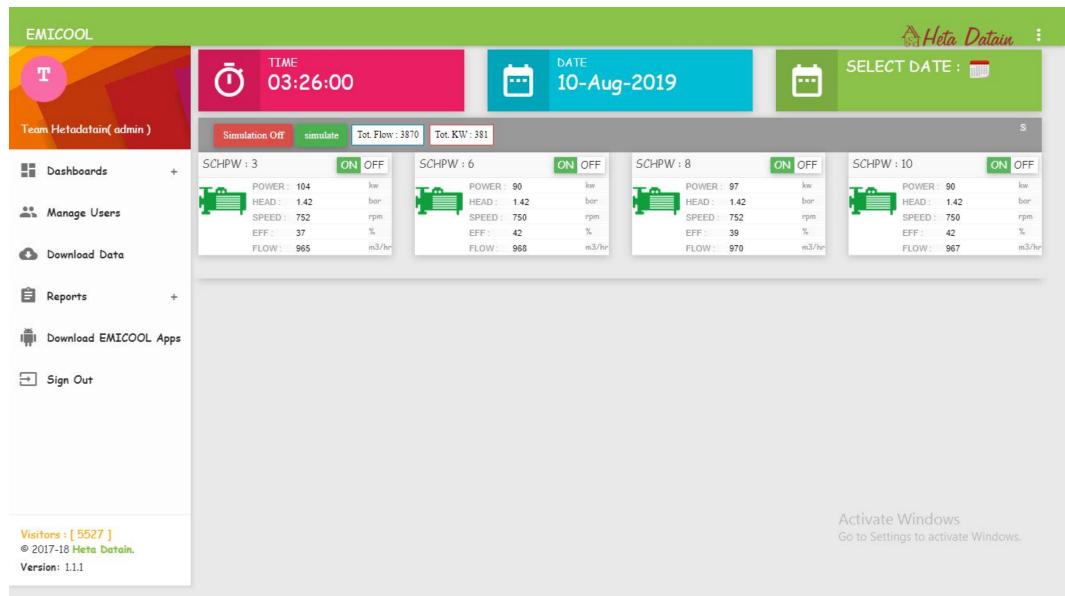

PUMP	
Make	Bell & Gossett
Model	10 x 14 x 20 L
Pump Head	270 FT / 82 M
Flow	5750 UsGpm / 21700 LPM
Pump Type	HSCS
Pump Rpm	1485
Inlet connection	14 Inch
Outlet Connection	10 Inch
Impeller dia	19.3 Inch
MOTOR	
Make	Siemens
Rpm	1489
Amp	657
KW	380
Voltage	400
HZ	50
CosQ	0.87

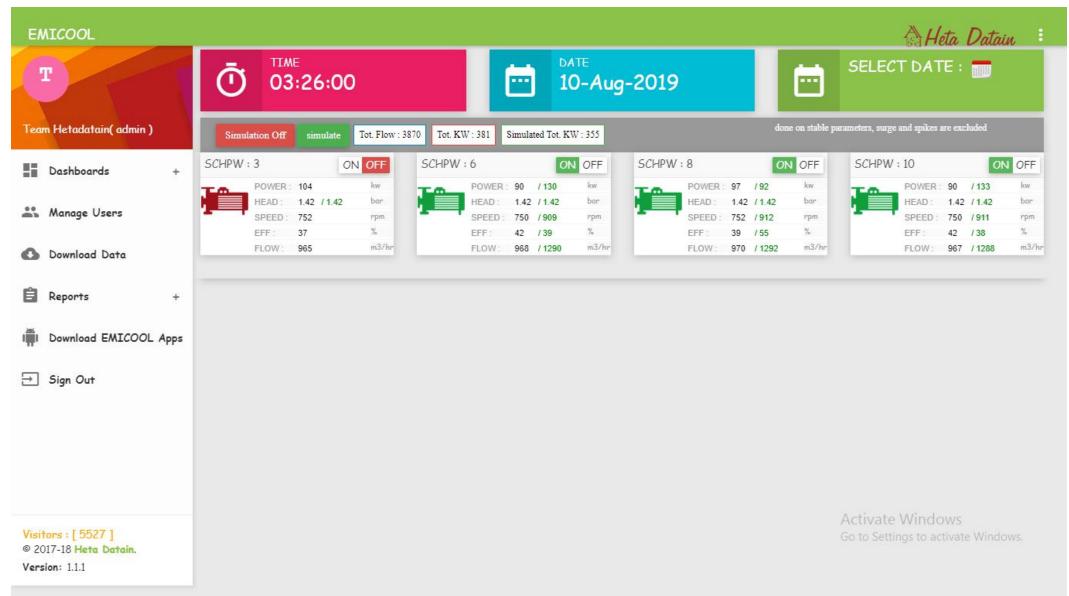
T	Ō	пи 03	⊧ :26:0	00				DATE 10-Aug	-2017	•	SELECT DATE : 🚃		
Team Hetadatain(admin)	Back	Start	Pause	Reset	Simulation ON			00:00:00	23:58	.00		S	
Dashboards +	SCHPW	: 1		ы	SCHPW	: 2		ш	SCHPW: 3		SCHPW : 4	la.	
Dashboards +		POWER :	111	low	-	POWER :	104	kw	POWER : 13	32 kw	POWER :	kw	
		HEAD :	2.8	bar		HEAD :	2.8	bar	HEAD : 2.	8 bar	HEAD : 2.8	bar	
🐁 Manage Users		SPEED :	885	rpm	-	SPEED :	883	rpm	SPEED : 88	5 rpm	SPEED :	rpm	
		EFF :	48	%		EFF :	54	%	EFF: 39	%	EFF :	"/c	
Download Data		FLOW:	679	m3/hr		FLOW:	719	m3/hr	FLOW: 66	66 m3/hr	FLOW :	m3/	
Reports +	SCHPW	: 5		ы	SCHPW	: 6		Lat.	SCHPW : 7	Lat.	SCHPW : 8	Ŀ	
		POWER :		kw.		POWER :	111	kw	POWER :	kw	POWER:	kw	
		HEAD :		bar		1	2.8	bar	HEAD: 2.	8 bar	HEAD : 2.8	bar	
Download EMICOOL Apps		SPEED :		rpm	-	Contraction of the second	883	rpm	SPEED :	rpm	SPEED :	rpm	
		EFF :		%		EFF :	49	%	EFF :	%	EFF :	1/2	
Sign Out		FLOW :		m3/hr		FLOW:	693	m3/hr	FLOW :	m3/hr	FLOW:	m3/	
	SCHPW	: 9		<u>Lat</u>	SCHPW	: 10		<u>L.1</u>	SCHPW : 11	ш	SCHPW : 12	Ŀ	
		POWER :		kw		POWER :	118	kw	POWER :	kw	POWER : 125	lcw	
		HEAD :		bar	T	HEAD :		bar	HEAD : 2.	8 bar	HEAD: 2.8	bar	
		SPEED :	1008/919	rpm		SPEED :	884	rpm	SPEED :	rpm	SPEED : 882	rpm	
		EFF :		%		EFF :	46	%	EFF :	%	EFF: 39	%	
		FLOW :		m3/hr		FLOW :	693	m3/hr	FLOW:	m3/hr	FLOW: 634	m3/	
											Activate Windows		








T	Ō	тім 03	:26:(00				DATE 10-Aug	-2018				SELEC	TDAT	E : 🚃	
eam Hetadatain(admin)	Back	Start	Pause	Reset	Simulation ON			00:00:00		2	3:58:00	Simulation done	on stable paran	neters, surge	and spikes are e	xcludec
Dashboards +	SCHPW :	1		<u>lat</u>	SCHPW	: 2		Lat.	SCHPW :	3		<u>lat</u>	SCHPW	: 4		<u>la</u>
	-	POWER :		low	TO	POWER :	97	kw		POWER :	118	kw	-	POWER :		kw
		HEAD :	2.26	bar		HEAD :	2.26	bar		HEAD :	2.26	bar		HEAD :	2.26	bar
Manage Users	-	SPEED :		rpm	-	SPEED :	826	rpm	-	SPEED :	827	rpm	-	SPEED :		rpr
		EFF :		%		EFF :	50	%		EFF :	39	%		EFF :		%
Download Data		FLOW:		m3/hr	_	FLOW:	774	m3/hr		FLOW :	737	m3/hr	-	FLOW :		m3
Reports +	SCHPW :	5		Lat.	SCHPW	: 6		ш	SCHPW :	7		La .	SCHPW	: 8		Ŀ
	-	POWER :		kw	_	POWER :		kw		POWER :	111	kw	-	POWER :	111	kw
			2.26	bar		HEAD :		bar			2.26	bar		HEAD :	2.26	bar
I Download EMICOOL Apps		SPEED :		rpm		SPEED :		rpm		SPEED :	827	rpm		SPEED :	828	rpr
		EFF :		%		EFF :		%		EFF :	43	%		EFF :	43	%
] Sign Out		FLOW :		m3/hr		FLOW:		m3/hr		FLOW :	755	m3/hr	_	FLOW:	758	m3
	SCHPW :	9		<u></u>	SCHPW	: 10		<u></u>	SCHPW :	11		<u>Lit</u>	SCHPW	: 12		L
		POWER :	111	kw	_	POWER :		kw	_	POWER :	104	kw	_	POWER :		kw
		HEAD :	2.26	bar		HEAD :		bar			2.26	bar		HEAD :		bar
		SPEED :	827	rpm		SPEED :		rpm		SPEED :	825	rpm		SPEED :		rpr
		EFF :	42	%		EFF :		%		EFF :	45	%		EFF :		%
		FLOW:	750	m3/hr		FLOW :		m3/hr		FLOW :	750	m3/hr		FLOW:		m3
									Contraction of the second				Activate	Windo	WS	


EMICOOL								🗟 Heta l	Datain
T		26:00			DATE 10-Aug	-2018		SELECT DATE :	
Team Hetadatain(admin)	Simulation Off	simulate Tot. Flow : 4	4525 Tot. KW : 651				imulation done of	on stable parameters, surge and spikes	are excluded
Dashboards +	SCHPW : 2	ON OFF	SCHPW : 3		ON OFF	SCHPW : 7	ON OFF	SCHPW : 8	ON OFF
	POWER :	97 kw	POWER :	118	kw	POWER : 111	kw	POWER : 111	kw
		2.26 bar		2.26	bar	HEAD: 2.26	bar	HEAD: 2.26	bor
🎒 Manage Users	SPEED :	326 rpm	SPEED :	827	rpm	SPEED : 827	rpm	SPEED : 828	rpm
	EFF	50 %	EFF :	39	%	EFF : 43	%	EFF: 43	%
🚯 Download Data	FLOW :	774 m3/hr	FLOW:	737	m3/hr	FLOW: 755	m3/hr	FLOW: 758	m3/hr
🛱 Reports +	SCHPW : 9	ON OFF	SCHPW : 11		ON OFF				
· · · · · · · · · · · · · · · · · · ·	POWER :	111 kw	POWER :	104	low.				
	HEAD : 2	2.26 bar	HEAD :	2.26	bar				
Download EMICOOL Apps	SPEED :	327 rpm	SPEED :	825	rpm				
	EFF :	42 %	EFF :	45	%				
∋ Sign Out	FLOW :	750 m3/hr	FLOW :	750	m3/hr				
								Activate Windows	
Visitors : [5527] © 2017-18 Heta Datain. Version: 1.1.1								Go to Settings to activate	Windows.

	Time	Head	Total Flow Required	Total Pu	imps ON	Actual Speed	Simulated Speed	Operating Power	Simulated Power	Savings per year (4320 hrs)
Date		(Bar)	(m3/hr)	Before Simulation	After Simulation	(RPM)	(RPM)	(KW)	(KW)	@ Rs.5 per KWHr
10-Aug-17		2.8	4084	6	5	885	923	700	392	Rs 66 Lac
10-Aug-18	03:26	2.26	4525	6	5	826	865	651	367	Rs. 46 Lac
10-Aug-19		1.42	3870	4	3	752	910	381	355	Rs 5 Lac

Process changes done

- 1. Reduction in HEAD by changing the USER side Flow Control
- 2. Changes in Pump parameters to get the Operating Point towards
- the Best Efficiency Point

Result of Pump Energy Optimisation

Each Pump Specification 12 Pumps in parallel

8 BAR

Head Flow 1305 CUM/HR Motor 450 KW Speed 1485 RPM

Normal Mode Scenario

6 Pumps work to give 5843 CUM/HR at 5.05 BAR consuming 1856 KW. Cost of Pumping is Rs. 1.58 / CUM

Energy Optimized Mode

5 Pumps work to give 5843 CUM/HR at 5.05 BAR consuming 1044 KW Cost of Pumping is Rs. 0.89 / CUM

Savings: 43%

Savings / year (working 4320 hrs) = Rs 1.75 Crore

P1		P2	2	P3		P4		P5		P6		TOTAL	
KW SPEED FLOW EFF	000 0000 0000 00	KW SPEED FLOW EFF	284 1200 1014 50	KW SPEED FLOW EFF	333 1200 932 39	KW SPEED FLOW EFF	000 0000 0000 00	KW SPEED FLOW EFF	000 0000 0000 00	KW SPEED FLOW EFF	298 1200 984 46	KW SPEED FLOW	1856 1200 5843 CUM/HR
 P7		P8 P9			P1	P10 P11			P1	2	HEAD 5.05 BAR		
KW SPEED FLOW EFF	326 1202 983 42	KW SPEED FLOW EFF	000 0000 0000 00	KW SPEED FLOW EFF	326 1201 965 42	KW SPEED FLOW EFF	298 1199 965 45	KW SPEED FLOW EFF	000 0000 0000 00	KW SPEED FLOW EFF	000 0000 000 00	KW/CUM 0.32 Cost of Pumping = Rs 1.58 / CUM @ Rs 5 per KWH	

P1	P1 P2		2	P3	3	P4	1		P5	Pé	6		TOTAL
KW SPEED FLOW EFF	000 0000 0000 00	KW SPEED FLOW EFF	196 1253 1206 86	KW SPEED FLOW EFF	000 0000 000 00	KW SPEED FLOW EFF	000 0000 0000 00	KW SPEED FLOW EFF	000 0000 0000 00	KW SPEED FLOW EFF	200 1250 1171 82	KW SPEED FLOW	1856 / 1044 1200 / 1250 5843 CUM/HR
P7	7 P8		P9 P10			P11 P12			2	HEAD	5.05 BAR		
KW SPEED FLOW EFF	202 1252 1170 81	KW SPEED FLOW EFF	000 0000 0000 00	KW SPEED FLOW EFF	198 1249 1148 81	KW SPEED FLOW EFF	198 1247 1148 81	KW SPEED FLOW EFF	000 0000 0000 00	KW SPEED FLOW EFF	000 0000 000 00	Cost = Rs (0.32 / 0.17 of Pumping 0.89 / CUM 5 per KWHr

Contact details

Heta Datain

HETA DATAIN 341 LAXMINAGAR, NAGPUR 440022 INDIA hdiddee@hetadatain.com, www.hetadatain.com +91-9422111044, +91-9208039225, Skype: hdiddee@live.com